Robust Optimization for Hybrid MDPs with State-Dependent Noise
نویسندگان
چکیده
Recent advances in solutions to Hybrid MDPs with discrete and continuous state and action spaces have significantly extended the class of MDPs for which exact solutions can be derived, albeit at the expense of a restricted transition noise model. In this paper, we work around limitations of previous solutions by adopting a robust optimization approach in which Nature is allowed to adversarially determine transition noise within pre-specified confidence intervals. This allows one to derive an optimal policy with an arbitrary (user-specified) level of success probability and significantly extends the class of transition noise models for which Hybrid MDPs can be solved. This work also significantly extends results for the related “chance-constrained” approach in stochastic hybrid control to accommodate state-dependent noise. We demonstrate our approach working on a variety of hybrid MDPs taken from AI planning, operations research, and control theory, noting that this is the first time robust solutions with strong guarantees over all states have been automatically derived for such problems.
منابع مشابه
An Effective Hybrid Genetic Algorithm for Hybrid Flow Shops with Sequence Dependent Setup Times and Processor Blocking
Hybrid flow-shop or flexible flow shop problems have remained subject of intensive research over several years. Hybrid flow-shop problems overcome one of the limitations of the classical flow-shop model by allowing parallel processors at each stage of task processing. In many papers the assumptions are generally made that there is unlimited storage available between stages and the setup times a...
متن کاملHybrid Probabilistic Search Methods for Simulation Optimization
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
متن کاملAn Effective Approach for Robust Metric Learning in the Presence of Label Noise
Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...
متن کاملOn the Smoothness of Linear Value Function Approximations
Markov decision processes (MDPs) with discrete and continuous state and action components can be solved efficiently by hybrid approximate linear programming (HALP). The main idea of the approach is to approximate the optimal value function by a set of basis functions and optimize their weights by linear programming. It is known that the solution to this convex optimization problem minimizes the...
متن کاملHindsight Optimization for Hybrid State and Action MDPs
Hybrid (mixed discrete and continuous) state and action Markov Decision Processes (HSA-MDPs) provide an expressive formalism for modeling stochastic and concurrent sequential decision-making problems. Existing solvers for HSA-MDPs are either limited to very restricted transition distributions, require knowledge of domain-specific basis functions to achieve good approximations, or do not scale. ...
متن کامل